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Detecting Late-Season Weed Infestations in Soybean (Glycine max)1

CLIFFORD H. KOGER, DAVID R. SHAW, CLARENCE E. WATSON, and KRISHNA N. REDDY2

Abstract: Field experiments were conducted in 1999 at Stoneville, MS, to determine the potential
of multispectral imagery for late-season discrimination of weed-infested and weed-free soybean. Plant
canopy composition for soybean and weeds was estimated after soybean or weed canopy closure.
Weed canopy estimates ranged from 30 to 36% for all weed-infested soybean plots, and weeds present
were browntop millet, barnyardgrass, and large crabgrass. In each experiment, data were collected
for the green, red, and near-infrared (NIR) spectrums four times after canopy closure. The red and
NIR bands were used to develop a normalized difference vegetation index (NDVI) for each plot,
and all spectral bands and NDVI were used as classification features to discriminate between weed-
infested and weed-free soybean. Spectral response for all bands and NDVI were often higher in
weed-infested soybean than in weed-free soybean. Weed infestations were discriminated from weed-
free soybean with at least 90% accuracy. Discriminant analysis models formed from one image were
78 to 90% accurate in discriminating weed infestations for other images obtained from the same and
other experiments. Multispectral imagery has the potential for discriminating late-season weed in-
festations across a range of crop growth stages by using discriminant models developed from other
imagery data sets.
Nomenclature: Barnyardgrass, Echinochloa crus-galli (L.) Beauv. #3 ECHCG; browntop millet,
Brachiaria ramosa (L.) Stapf # PANRA; large crabgrass, Digitaria sanguinalis (L.) Scop. # DIGSA;
soybean, Glycine max (L.) Merr.
Additional index words: Discriminant analysis, multispectral, remote sensing, normalized difference
vegetation index, weed detection.
Abbreviations: DGPS, differential global positioning system; exp., experiment; NDVI, normalized
difference vegetation index; NIR, near infrared; POST, postemergence; PRE, preemergence.

INTRODUCTION

Weeds are often distributed spatially in an aggregated
manner across fields (Goudy et al. 2001; Johnson et al.
1995; Medlin et al. 2000; Mortensen et al. 1998; Thorn-
ton et al. 1990; Van Groenendael 1988; Wiles et al.
1992). Several physical and chemical soil properties,
such as pH (Buchanan et al. 1975; Weaver and Hamill
1985), nutrient levels (Banks et al. 1976; Medlin et al.
2001), organic matter content, and cation exchange ca-
pacity (Medlin et al. 2001), are believed to contribute to
‘‘patchy’’ weed distributions. Medlin et al. (2001) also
found that topographic elevation influenced uneven dis-

1 Received for publication July 3, 2002, and in revised form March 27,
2003.

2 First and fourth authors: Research Weed Biologist and Plant Physiologist,
USDA-ARS, Southern Weed Science Research Unit, 141 Experiment Station
Road, P.O. Box 350, Stoneville, MS 38776; second and third authors: Professor,
Department of Plant and Soil Sciences, and Associate Director of Mississippi
Agriculture, Forestry and Extension Service, Mississippi State University, Mis-
sissippi State, MS 39762. Corresponding author’s E-mail: ckoger@ars.usda.gov.

3 Letters following this symbol are a WSSA-approved computer code from
Composite List of Weeds, Revised 1989. Available only on computer disk
from WSSA, 810 East 10th Street, Lawrence KS 66044-8897.

tribution of weeds such as sicklepod [Senna obtusifolia
(L.) Irwin and Barneby], pitted morningglory (Ipomoea
lacunosa L.), and horsenettle (Solanum carolinense L.)
across fields.

Herbicides are usually broadcast applied over entire
fields, even though weed distribution is typically hetero-
geneous across fields. Applying herbicides where weeds
do not occur results in unnecessary use of herbicide,
costs associated with herbicide use, and time required
for application, and an increased risk of herbicide move-
ment to off-site areas (Cousens and Woolcock 1987; Fel-
ton et al. 1991; Swanton and Weise 1991; Thompson et
al. 1991). Traditionally, intensive scouting has been the
only means of providing information concerning weed
distributions. However, scouting is labor and time inten-
sive. Interest in using remote sensing for developing
weed distribution maps has increased in recent years.
The use of this technology has the potential to provide
rapid assessments of weed distributions that can be used
in treating only those portions of fields that contain
weeds. This use would help to reduce herbicide costs
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and costs associated with herbicide use while still main-
taining adequate weed control.

Researchers have envisioned linking weed distribution
maps generated via remote sensing, differential global
positioning systems (DGPS), and site-specific herbicide
applicators for targeting herbicide inputs only to those
areas in the field that contain weed densities above eco-
nomic thresholds (Christensen et al. 1999; Thornton et
al. 1990). However, early-season detection of small
weeds, which is the time frame in which weed control
is most crucial for minimizing impact on crop yield
(Barrentine 1974; Bloomberg et al. 1982), is faced with
several challenges. Background reflectance of soil and
vegetation often interferes with detection capabilities of
small, early-season weeds (Bausch 1993; Medlin et al.
2000). Medlin et al. (2000) found that these factors in-
fluenced the ability to discriminate 5- to 10-cm-tall
weeds intermixed with early-season soybean. Another
challenge is that reflectance properties for small crops
and weeds growing in association with one another may
not differ substantially (Franz et al. 1991). Another po-
tential challenge is the fact that little is known about the
impact that soil roughness and background reflectance
from crop residues in different tillage systems have on
weed detection capabilities. Daughtry et al. (1995) found
that reflectance of plant residues and soil typically differ,
and often vary, in different tillage systems.

Even though accurate detection of small, early-season
weeds with remote sensing may be hampered by physi-
cal or physiological factors, the technology has tremen-
dous capabilities for detecting late-season weed infesta-
tions. Remote sensing has been used to distinguish var-
ious troublesome weeds in rangeland systems after clo-
sure of vegetation canopy (Balough and Bookhout 1989;
Everitt et al. 1991, 1992, 1993, 1995, 1996; Lass et al.
1996; Peters et al. 1992). Richardson et al. (1985) as
well as Menges et al. (1985) used multispectral video
imagery to differentiate homogenous plots of cotton
(Gossypium hirsutum L.), cantaloupe (Cucumis melo L.),
Palmer amaranth (Amaranthus palmeri S. Wats.), john-
songrass [Sorghum halepense (L.) Pers.], and sorghum
[Sorghum bicolor (L.) Moench.]. These species were
successfully differentiated late in the growing season,
when plants were mature and the soil surface was com-
pletely covered. However, trying to differentiate these
species from bare soil early in the growing season was
difficult.

Reduction in the use of prophylactic preemergence
(PRE) herbicides with residual activity and a shift to-
ward total postemergence (POST) herbicide weed con-

trol programs also may result in an increased need for
remotely sensed detection of late-season weed infesta-
tions. Weed control programs consisting of total POST,
nonresidual herbicides may provide less effective, full-
season weed control and result in more late-season
weeds than residual PRE plus POST herbicide programs
(Vangessel et al. 2000, 2001). Ever-increasing adoption
of herbicide-resistant crops such as glyphosate-resistant
soybean, whose standard herbicide program often con-
sists of total POST application of a nonresidual, nonse-
lective herbicide (glyphosate), also may result in in-
creased occurrence of late-season weed populations in
some cases. This is especially true for weeds that are
capable of germinating well into the growing season,
such as barnyardgrass (Keeley and Thullen 1989), fall
panicum (Panicum dichotomiflorum Michx.) (Vangessel
et al. 2000), and common cocklebur (Xanthium strumar-
ium L.) (Bloomberg et al. 1982).

Late-season weed detection may prove to be a useful
tool in mapping where late-season weed infestations oc-
cur, and in turn where weed seed rain and seed banks
are the greatest in fields. Late-season weed infestation
maps can be used to predict where control methods
should be directed the following year so as to control
weeds effectively and efficiently and reduce the weed
seed bank. Weed infestations can be relatively stable
from year to year (Wilson and Brain 1991). Develop-
ment of weed distribution maps based on late-season re-
mote sensing imagery should be free of background soil
reflectance and crop residues, which often hinder early-
season weed detection capabilities. The objective of this
research was to evaluate the potential of remote sensing
for detection of late-season weed infestations in soybean.

MATERIALS AND METHODS

This research was conducted in conjunction with two
existing soybean experiments that were initiated in the
fall of 1998 at the USDA-ARS, Southern Weed Science
Research Unit, near Stoneville, MS. The soil type was a
Dundee silt loam (fine-silty, mixed, thermic, Aeric
Ochraqualfs), with pH of 6.4 and 6.3 and organic matter
contents of 1.6 and 1.1% for experiments 1 and 2 (exp.
1 and exp. 2), respectively. Each experiment was ar-
ranged in a randomized complete block with a split–
split-plot arrangement of treatments. Each treatment was
replicated four times. Sub-subplot size was 4.5 by 12 m.
The main-plot factor for exp. 1 was cover crop residue,
with main plots of no cover crop, ‘Elbon’ rye (Secale
cereale L.), and crimson clover (Trifolium incarnatum
L.). Rye and crimson clover seed were drilled at 84 and
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Table 1. Soybean growth stage, soybean and grass heights, and grass canopy estimates in weed-infested soybean and soybean growth stage and height in weed-
free soybean at the time of image acquisition for experiment 1.a,b

Image-acquisition
date

Weed-infested soybean

Soybean
growth staged

Soybean
height

Grass
height

Grass
composition

Weed-free soybeanc

Soybean
growth staged

Soybean
height

cm % cm

August 11
August 19
August 28
September 9

R3
R3–R4
R4
R4–R5

78
82
91
94

67
68
74
75

32
36
35
30

R3
R3–R4
R4
R4–R5

82
90
96
98

a Data were pooled over cover crop residue and tillage treatments for each image-acquisition date.
b Images were acquired after soybean or grass (weed infested) and soybean (weed free) canopy closure.
c Plots were treated with flumetsulam (0.06 kg ai/ha) plus metolachlor (2.31 kg ai/ha) preemergence and bentazon (0.56 kg ai/ha) plus acifluorfen (0.3 kg ai/

ha) plus clethodim (0.14 kg ai/ha) postemergence.
d Abbreviations: R3, soybean pods 5 mm in length on one of the four uppermost nodes; R4, seed pods 3 cm in length; R5, seed development, with seed

approximately 3 mm in length.

Table 2. Soybean growth stage, soybean and grass heights, and grass canopy estimates in weed-infested soybean and soybean growth stage and height in weed-
free soybean at the time of image-acquisition for experiment 2.a,b

Image-acquisition
date

Weed-infested soybean

Soybean
growth staged

Soybean
height

Grass
height

Grass
composition

Weed-free soybeanc

Soybean
growth staged

Soybean
height

cm % cm

August 11
August 19
August 28
September 9

R4
R4
R4–R5
R5

85
91
93
99

71
76
88
76

33
30
32
31

R4
R4
R4–R5
R5

91
96

101
98

a Data were pooled over soybean row spacing and cover crop residue treatments for each image-acquisition date.
b Images were acquired after soybean or grass (weed infested) and soybean (weed free) canopy closure.
c Plots were treated with flumetsulam (0.06 kg ai/ha) plus metolachlor (2.31 kg ai/ha) preemergence and bentazon (0.56 kg ai/ha) plus acifluorfen (0.3 kg ai/

ha) plus clethodim (0.14 kg ai/ha) postemergence.
d Abbreviations: R3, soybean pods 5 mm in length on one of the four uppermost nodes; R4, seed pods 3 cm in length; R5, seed development, with seed

approximately 3 mm in length.

25 kg/ha in 19-cm-wide rows. The subplot factor was
tillage with no-till and conventional till treatments. The
main-plot factor for exp. 2 was soybean row spacing,
with spacings of 19, 57, and 94 cm. The subplot factor
was no cover crop or rye (84 kg/ha) cover crop residue.
Sub-subplots for each experiment were (1) no herbicide,
(2) 0.06 kg ai/ha flumetsulam plus 2.31 kg ai/ha meto-
lachlor applied PRE, (3) 0.56 kg ai/ha bentazon plus 0.3
kg ai/ha acifluorfen plus 0.14 kg ai/ha clethodim applied
POST, and (4) 0.06 kg/ha flumetsulam plus 2.31 kg/ha
metolachlor applied PRE and 0.56 kg/ha bentazon plus
0.3 kg/ha acifluorfen plus 0.14 kg/ha clethodim applied
POST. Rye plots were seeded in October 1998 and des-
iccated with 1.1 kg ai/ha paraquat on April 21, 1999. All
plots were planted with ‘DP 3588’ soybean on April 30,
1999. Soybean row spacing for exp. 1 was 57 cm. Be-
cause of soybean stand failure, exp. 1 was replanted on
May 15, after existing soybean was desiccated with 1.1
kg/ha paraquat.

Percent composition of soybean and weeds in the can-

opy was visually estimated after canopy closure in no-
herbicide plots and in plots treated with PRE plus POST
herbicides in both experiments on August 11, 18, and 28
and September 9, 1999. Weed populations in plots treat-
ed with only PRE or POST herbicides were extremely
variable; therefore, data were not collected from these
plots. Plots treated with PRE plus POST herbicides were
essentially free of weeds when images were acquired and
will be referenced as ‘‘weed free.’’ Grasses comprised
most of the vegetative canopy occupied by weeds in the
no-herbicide (weed-infested) plots. Because grasses
present in the weed-infested soybean plots were inter-
mixed extensively, vegetative canopy estimates for
browntop millet, barnyardgrass, and large crabgrass were
summed together for each weed-infested plot. Soybean
growth stage and height and grass height and estimated
canopy composition data are listed in Tables 1 (exp. 1)
and 2 (exp. 2).

Within 2 d of estimation of weeds and crops, multi-
spectral imagery was collected with an aerial Real-time
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Digital Airborne Camera System sensor that contained a
lens with 12.5-mm focal length, using charged-couple
devices in a two-dimensional detector array. All images
are 8-bit image pixels, and narrow–band-pass filters col-
lected spectral response data for the visible green (540
6 5 nm), red (695 6 5 nm), and near-infrared (NIR)
(840 6 5 nm) spectral bands. Spectral data for each band
were quantified in radiance (W/m2/sr) measured at the
sensor for each pixel and ranged from 0 to 255, with a
value of 255 being the brightest reflectance value pos-
sible. Imagery was collected at an altitude of 1.8 km to
allow for 1-m spatial resolution. Images were geomet-
rically corrected to geographic coordinates (latitude and
longitude) using the geodetic datum of World Geodetic
System 84, with ground control points obtained using a
DGPS unit. DGPS coordinates for the center of each plot
were determined so that an area of 3-m2 could be sam-
pled from the plot center. To account for the 1-m accuracy
of the DGPS and minute errors associated with image
processing, spectral data for each 1-m2 pixel within each
sampling area were averaged for each spectral band. Red
and NIR spectral data from each plot were used to de-
velop a normalized difference vegetation index (NDVI)
(NIR 2 red and NIR 1 red) (Rouse et al. 1973).

Spectral (green, red, and NIR) and NDVI data across
tillage, cover crop residue, and row-spacing factors were
analyzed according to the split plot experimental design.
However, these factors had no effect on spectral or
NDVI data. Thus, data for weed-infested and weed-free
plots were pooled across these factors and analyzed as a
randomized complete block design for each experiment,
resulting in 24 blocks within each experiment. Spectral
and NDVI data were subjected to analysis of variance,
and means were separated at the 5% level of significance
by Fisher’s protected LSD test. The best variables (spec-
tral bands and NDVI) for discriminating weed-infested
and weed-free soybean were selected based on an F test
(P , 0.15) for each variable within stepwise discrimi-
nant analysis (Franz et al. 1991). Discriminant analysis
techniques were used to determine the potential for dif-
ferentiating between weed-infested and weed-free soy-
bean within each experiment and to evaluate the effec-
tiveness of using discriminant models developed from
one data set based on classification of other sets. All
analysis procedures were conducted in SAS,4 and cross-
validation summaries of discriminant classification tests
were reported in all results.

4 SAS version 8.01, SAS Institute, Inc., Cary, NC 27513-2414.

RESULTS AND DISCUSSION

Tillage, cover crop residue, and soybean row spacing
had no effect (P . 0.05) on spectral response in the
green, red, and NIR spectrums (data not shown). There-
fore, spectral data (green, red, NIR, and NDVI) were
pooled across tillage, cover crop residue, and row-spac-
ing factors for each weed-infested and weed-free soy-
bean plot of each experiment, resulting in 24 weed-in-
fested and 24 weed-free soybean for each experiment.
Late-season grass canopy estimates for weed-infested
soybean plots varied , 7% across the four image-col-
lection dates, with estimates ranging from 30 to 36% in
exp. 1 (Table 1) and 30 to 33% in exp. 2 (Table 2).

Spectral Data for Weed-Infested and Weed-Free Soy-
bean. Spectral response for the green, red, and NIR
bands were higher in weed-infested soybean than in
weed-free soybean of exp. 1 for the August 11, 18, and
28 images (Table 3). These results are similar to those
of Richardson et al. (1985), who found spectral response
in the red and NIR bands to be higher for weeds (john-
songrass) than for crops (cotton and sorghum). Green
and red spectral responses in our study also were higher
in weed-infested soybean than in weed-free soybean for
the September 9 image. NDVI values were higher for
weed-infested soybean than for weed-free soybean in the
September 9 image.

For exp. 2, spectral response for the red and NIR
bands were higher for weed-infested soybean than for
weed-free soybean for the August 11, 18, and 28 images
(Table 3). However, by the latest image-collection date
(September 9), there was no difference in red and NIR
spectral response or NDVI for weed-infested and weed-
free soybean plots. The lack of differences in spectral
response by September 9 may be attributed to substantial
crop and grass senescence. Soybean and grass leaves
were turning yellow in color by the time the last images
were acquired (September 9).

Substantial differences in late-season spectral response
for the various spectral bands and NDVI may prove to
be beneficial when trying to differentiate weed-infested
soybean from weed-free soybean. However, it appears
that spectral data should be recorded before plants begin
to senesce late in the growing season because differences
in spectral-response data were still prevalent in exp. 1
by September 9 (Table 3), when soybean was highly
vegetative (green). On the other hand, spectral response
for the red and NIR bands and NDVI were not different
between weed-infested and weed-free soybean when
soybean began to lose color and defoliate in exp. 2 by
September 9. Substantial differences in spectral respons-
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Table 3. Mean values for green, red, near-infrared (NIR), and normalized difference vegetation index (NDVI) variables for images of weed-infested and weed-
free soybean of experiments 1 and 2.a–c

Image-
acquisition date Weed levelf

Experiment 1d

Green Red NIR NDVI

Experiment 2e

Green Red NIR NDVI

Spectral responseg

August 11 Weed infested
Weed free
P value

95 a
78 b
0.002

93 a
84 b
0.0035

175 a
165 b

0.002

0.31 a
0.32 a
0.128

93 a
90 a
0.651

96 a
85 b
0.005

180 a
166 b

0.002

0.34 a
0.33 a
0.321

August 19 Weed infested
Weed free
P value

112 a
93 b
0.003

100 a
86 b
0.0021

190 a
169 b

0.0034

0.31 a
0.32 a
0.0923

119 a
113 b

0.035

111 a
95 b
0.0025

180 a
153 b

0.0015

0.23 a
0.23 a
0.905

August 28 Weed infested
Weed free
P value

101 a
84 b
0.015

92 a
83 b
0.024

172 a
150 b

0.0012

0.30 a
0.29 a
0.193

105 a
98 b
0.0024

103 a
90 b
0.0051

139 a
110 b

0.016

0.15 a
0.10 b
0.0084

September 9 Weed infested
Weed free
P value

124 a
111 b

0.0078

79 a
78 a
0.689

189 a
163 b

0.027

0.41 a
0.35 b
0.0314

112 a
103 b

0.0048

96 a
90 a
0.0941

129 a
128 a

0.851

0.15 a
0.17 a
0.743

a Spectral response was 540 6 5 nm for green, 695 6 5 nm for red, and 840 6 5 nm for NIR spectrums.
b Green, red, and NIR spectral data were obtained with an airborne camera system, and NDVI was derived according to the function NIR 2 red/NIR 1 red.
c Mean values followed by the same letter within a column and image-acquisition date are not significantly different according to Fisher’s protected LSD test

at P 5 0.05.
d Data were pooled over cover crop residue and tillage treatments for each image-acquisition date.
e Data were pooled over soybean row spacing and cover crop residue treatments for each image-acquisition date.
f Weed-infested plots were treated with flumetsulam (0.06 kg ai/ha) plus metolachlor (2.31 kg ai/ha) preemergence and bentazon (0.56 kg ai/ha) plus acifluorfen

(0.3 kg ai/ha) plus clethodim (0.14 kg ai/ha) postemergence.
g Quantization of measurable radiance (W/m2/sr).

es between the two experiments were probably due to
exp. 2 being planted 2 wk after exp. 1, resulting in dif-
ferent vegetative growth stages for soybean between the
two experiments when images were acquired.

Relative Importance of Classification Variables. As
the number of selected classification variables (green,
red, NIR, and NDVI) according to stepwise discriminant
analysis increased, the average squared canonical cor-
relation (ASCC) value also increased. The ASCC is an
accumulative measure of the variation accounted for by
each selected classification variable. Typically, as the
ASCC value approaches 1 for selected variables, dis-
crimination capabilities of the linear discriminant func-
tion improve when compared with ASCC values closer
to 0 (Johnson 1998). When three or more classification
variables were selected by the stepwise discriminant
function, ASCC values were typically greater than 0.66
(Tables 4 and 5). The green, red, and NIR bands had a
composite ASCC value of 0.77 for the August 11 col-
lection date of exp. 1. The August 28 and the September
9 collection dates of exp. 2 had composite ASCC values
of 0.67 (NDVI, green, and red) and 0.68 (green, red,
NIR, and NDVI), respectively. However, there were in-
stances where two or fewer classification variables were
selected by the stepwise discriminant procedure and re-
sulted in ASCC values of greater than 0.5. The ASCC
values were 0.55 and 0.59 for the August 28 collection

date of exp. 1 and the August 19 collection date of exp.
2, respectively (Tables 4 and 5).

The green spectral band proved to be the most con-
sistent classification variable selected in stepwise dis-
criminant analysis. The green band was selected as an
important classification variable in all the four exp. 1
collection dates and in three of the four collection dates
of exp. 2. It also was the sole classification variable se-
lected for the August 28 collection date of exp. 1. How-
ever, even though the green spectral band was the most
consistently selected, it was not always the largest con-
tributor to the ASCC value. The degree of variability
accounted for by the green band was minimal for some
images when compared with other classification vari-
ables, with the green variable accounting for 0.02 and
0.03 of the total 0.45 and 0.67 ASCC values for the
August 19 (exp. 1) and August 28 (exp. 2) collection
dates, respectively (Tables 4 and 5).

Even though the stepwise discriminant procedure pro-
vided a good indication of which variables had the best
discrimination capabilities, it may be beneficial to use all
classification variables in developing linear discriminant
functions for classification purposes. The use of all avail-
able bands as classification variables is especially true
for multispectral remote sensing data, where typically
only three to five spectral bands are available for devel-
oping discriminant models. Additionally, using the step-
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Table 4. Statistics of the stepwise discriminant analysis of classification variables (green, red, NIR, and NDVI) used for discriminating weed-infested and weed-
free soybean from each image of experiment 1.a

Image-acquisition
date

Classification variable
entered into

discriminant model

Model
entrance
numberb

Statistics

Partial R2 F value Probability . Fc

Average squared
canonical correlationd

August 11

August 19

August 28
September 9

Green
Red
NIR
Red
Green
Green
Green
NDVI

1
2
3
1
2
1
1
2

0.65
0.29
0.10
0.43
0.05
0.56
0.53
0.15

84.43
18.93
5.1

34.62
2.45

59.5
52.29
7.88

, 0.0001
, 0.0001

0.0289
, 0.0001

0.1248
, 0.0001
, 0.0001

0.0074

0.64
0.75
0.77
0.43
0.45
0.55
0.53
0.61

a Abbreviations: NIR, near-infrared; NDVI, normalized difference vegetation index.
b Variable entered into discriminant model according to the amount of variability accounted for by that variable, with the first variable accounting for more

variation that the second variable.
c Variables entered into discriminant model at the P 5 0.15 level.
d Accumulative measure of the variation accounted for by selected classification variables.

Table 5. Statistics of the stepwise discriminant analysis of classification variables (green, red, NIR, and NDVI) used for discriminating weed-infested and weed-
free soybean from each image of experiment 2.a

Image-acquisition
date

Classification variable
entered into

discriminant model

Model
entrance
numberb

Statistics

Partial R2 F value Probability . Fc

Average squared
canonical correlationd

August 11

August 19
August 28

September 9

NDVI
Green
NIR
NDVI
Green
Red
Green
NIR
Red
NDVI

1
2
1
1
2
3
1
2
3
4

0.69
0.19
0.59
0.61
0.09
0.077
0.21
0.1583
0.26
0.37

101.9
10.34
70.3
69.43
4.87
3.54

11.7
8.46

15.39
24.81

, 0.0001
0.0024

, 0.0001
, 0.0001

0.0325
0.0666
0.0013
0.0056
0.0003

, 0.0001

0.69
0.75
0.59
0.61
0.64
0.67
0.21
0.33
0.51
0.68

a Abbreviations: NIR, near-infrared; NDVI, normalized difference vegetation index.
b Variable entered into discriminant model according to the amount of variability accounted for by that variable, with the first variable accounting for more

variation than next variable.
c Variables entered into discriminant model at the P 5 0.15 level.
d Accumulative measure of the variation accounted for by selected classification variables.

wise discriminant procedure to select among variables
that are potentially collinear, such as NDVI and the red
and NIR variables used to derive NDVI, may lead to the
elimination of important discriminant variables. As in
the case of this research, there was a strong linear rela-
tionship between the NDVI variable and those variables
(red and NIR) used to derive NDVI. A negative rela-
tionship (r 5 2 0.70 to 2 0.96) existed between NDVI
and the red variable across both experiments and all im-
ages, whereas a positive relationship (r 5 0.68 to 0.97)
existed between NDVI and the NIR variable (data not
shown). The stepwise discriminant function may prove
to be more useful for selecting a number of pertinent
spectral bands from hyperspectral remote sensing data,
where there may be over 2000 spectral bands available

for discriminating weed-infested crop from weed-free
crop.

Discrimination of Weed-Infested and Weed-Free Soy-
bean. The green, red, and NIR spectral bands and NDVI
were used in developing linear discriminant models for
both the experiments and all the image-collection dates.
For each experiment and image-collection date, the over-
all average ability to discriminate weed-infested soybean
from weed-free soybean was 90% or greater, regardless
of experiment, soybean growth stage, and grass canopy
composition at the time of image acquisition (Table 6).
The consistency in correct classification across the dif-
ferent image-collection dates was important because soy-
bean growth stage late in the season did not influence
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Table 6. Correct classification accuracy of weed-infested and weed-free soybean of experiments 1 and 2 using green, red, and near-infrared spectral bands and
normalized difference vegetation index as classification variables in linear discriminant analysis.

Image-acquisition
date

Experiment 1

Weed
infested Weed freea

Average
accuracyb

Experiment 2

Weed
infested Weed freea

Average
accuracyb

% correct classification

August 11
August 19
August 28
September 9

92
88
88
88

96
92
92
92

94
90
90
90

96
84
87
85

96
100
100
96

96
92
94
91

a Plots treated with flumetsulam (0.06 kg ai/ha) plus metolachlor (2.31 kg ai/ha) preemergence and bentazon (0.56 kg ai/ha) plus acifluorfen (0.3 kg ai/ha)
plus clethodim (0.14 kg ai/ha) postemergence.

b Average classification accuracy of weed-infested and weed-free plots within each image-acquisition date and experiment.

Table 7. Correct classification accuracy of weed-infested and weed-free soybean of experiments 1 and 2 using green, red, and near-infrared spectral bands and
normalized difference vegetation index as classification variables in linear discriminant models fitted for other images and the other experiment.a,b

Data set used to develop
discriminant model

Exp. Image acq. date

Data set tested in linear
discriminant analysis

Exp. Image acq. date
Weed

infested
Weed
free

Average
accuracyb

% correct classification

1
1
1
1
2
2
2
2
2
2

August 11
August 28
September 9
August 11
August 11
August 28
September 9
August 11
August 11
September 9

1
1
1
1
2
2
2
2
1
1

August 19
September 9
August 11
September 9
August 19
September 9
August 11
September 9
August 11
September 9

94
84
55

100
100
84
75
73
86
79

86
78
48
38
84
96
55
79
74
86

90
81
51
71
92
90
65
75
80
83

1
1
2
2
1
1

August 11
September 9
September 9
August 11
September 9
August 11

2
2
1
1
2
2

August 11
September 9
August 11
September 9
August 11
September 9

75
80
88
24
44
58

80
80
25
70
66
54

78
80
56
47
55
56

a Abbreviations: Exp., experiment; acq., acquisition.
b Average classification accuracy of weed-infested and weed-free soybean within each experiment and image-acquisition date.

discrimination capabilities. The use of multispectral im-
ages for late-season weed detection may prove to be a
useful tool because images can be collected over a wide
window of time while still maintaining high levels of
detection accuracy. Another benefit is that weed control
decisions based on late-season images will typically be
made in the following seasons. Thus, image-processing
time is not critical, and image delivery could be more
economical.

The correct discrimination of weed-infested soybean
was very high, with 88 to 92% correct classification for
exp. 1 and 85 to 96% for exp. 2 across all the images
(Table 6). Weed-free soybean was rarely mistaken for
weed-infested soybean, with 92 to 96% and 96 to 100%
correct classification of weed-free soybean in exp. 1 and
exp. 2, respectively. Correct classification of weed-in-
fested and weed-free soybean consistently reduces the

risk of misclassifying weed patches, and in turn the like-
lihood of not identifying weed patches in images that
may be used for developing herbicide-application maps
for the following growing season.

The versatility of the developed linear discriminant
models was evaluated by classifying weed-infested and
weed-free soybean from one image by using models de-
veloped from another image for the same experiment.
For exp. 1, the overall correct classification of weed-
infested and weed-free soybean was 90% when classi-
fying plots from the August 19 image on the basis of
discriminant models developed from the August 11 im-
age (Table 7). The overall average classification of plots
from the September 9 image based on models from the
August 28 image was 81%. However, when testing plots
from the August 11 and September 9 images by using
models developed from the September 9 and August 11
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images, overall discrimination capabilities were reduced
to 51 and 71% (Table 7), respectively. Differences in
soybean growth stage between the two opposing images
probably contributed to the reduced classification capa-
bilities. On August 11, soybean plants were green and
in the R3 (soybean pods 5 mm in length) growth stage,
whereas soybean plants were beginning to senesce and
were in the R4 to R5 growth stage (seed pods 3 cm in
length to seed development) by September 9. For exp.
2, correct classification of weed-infested and weed-free
soybean for the August 19 image was 100 and 84%,
respectively, when using models developed with the Au-
gust 11 image. The overall average correct classification
for the system was 92%. Similar classification capabili-
ties resulted from testing the September 9 image on the
basis of discriminant models for the August 28 image,
with 90% correct classification. However, as in results
for exp. 1, the ability to discriminate weed-infested from
weed-free soybean using models formed with the August
11 and September 9 images to test the September 9 and
August 11 images was reduced to 65 and 75%, respec-
tively. Substantial differences in soybean plant color and
growth stage probably contributed to the reduction in
discriminating capabilities.

Testing discrimination capabilities for the August 11
and September 9 images with discriminant models de-
veloped from the same image-collection date but in a
different experiment resulted in 78% or better classifi-
cation for all the scenarios tested (Table 7). However,
discrimination capabilities were reduced when testing
the August 11 and September 9 images of both the ex-
periments with models developed from the September 9
and August 11 images of the other experiment. These
tests resulted in 47 to 56% overall correct classification
of weed-infested and weed-free plots for all the scenarios
tested. As previously mentioned, for testing within ex-
periments, differences in plant color and growth stage
are believed to have contributed to reduced discriminat-
ing capabilities when classifying plots using discriminant
models from the other experiments and images. Thus,
crop growth stage between data sets should be similar
so that accurate classification assessments of weed in-
festations can be made when using discriminant models
from data sets other than the one being tested.

This research also spawns several questions that need
further research. One question involves the potential for
linking weed distribution maps on the basis of late-sea-
son images and factors such as soil properties. Medlin
et al. (2001) found that spatial distribution of weeds such
as sicklepod and pitted morningglory was related to soil

pH and nutrient levels. Linking these two relationships
may be helpful in understanding the often patchy distri-
bution of weeds. Future research needs to be conducted
on the potential for discriminating other weed species
and to determine whether different weed canopy com-
position levels influence the ability to classify weed
patches.
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